CURRICULUM VITAE YUJUN CHOI

830 Claytor Square, Blacksburg, VA 24060 Email: yujunchoi@vt.edu Phone Number: 608-338-2247

Google Scholar: https://scholar.google.com/citations?user=O06k3YwAAAAJ&hl=en

RESEARCH INTERESTS

- Quantum Information Science: Quantum Computing and Quantum Networks
- Semiconductor Spin Qubit Devices, Spin-Photon Interface in Silicon
- Open Quantum Systems, Decoherence, Noise Suppression and Mitigation

EDUCATION

University of Wisconsin-Madison

2023

Ph.D. in Physics

Madison, WI, USA

Advisor: Dr. Robert J. Joynt

Thesis: Characterization of Noise Sources in Semiconductor Qubit Devices

Yonsei University

2017

M.S. in Physics

Seoul, Korea

Advisor: Dr. Kyunghwan Oh

Thesis: Quantum Information Processing using Classical and Quantum Interference

Yonsei University

2014

B.S. in Physics

Seoul, Korea

RESEARCH EXPERIENCE

Position	Responsibility	Organization/ Supervisor	Year
Postdoctoral	Noise spectroscopy with space-curve	Virginia Tech/	Sep.
Associate	formalism	Dr. Sophia E.	2023 -
	■ Single-shot entangling gates between distant	Economou,	Present
	semiconductor spin qubits coupled to a superconducting resonator	Dr. Edwin Barnes	
	 Theoretical study on silicon T centers for photonic graph state generation 		
	 Mitigation of charge noise with ballast charges 		

Graduate Research Assistant	 Geometric analysis on cross power spectral densities of semiconductor spin qubits The role of charge noise sources in pulse-induced resonance frequency shift of semiconductor spin qubits The effect of driving field on charge noise sources in semiconductor quantum dot devices Noise characterization of semiconductor quantum dot devices by using anisotropy in relaxation and dephasing times of spin qubits 	University of Wisconsin- Madison/ Dr. Robert J. Joynt	Sep. 2018 – Aug. 2023
Graduate Research Assistant	 Experimental realization of a noisy CNOT gate with linear-optic elements and data analysis of the gate for a preset noise parameter Preparation and tomography of ququart states using polarization and time-bin modes of a single photon Generation of non-zero quantum discord in a two-qubit state using the second-order interference of a laser Proof-of-principle experiment of Plug-and-Play measurement-device-independent quantum key distribution 	Center for Quantum Information, Korea Institute of Science and Technology/ Dr. Yong-Su Kim	Mar. 2014 – Aug. 2017

TEACHING EXPERIENCE

Position	Responsibility	Organization/	Year
		Supervisor	
Research	 Advised undergraduate research project 	Department of	Jan.
Advisor		Physics, Virginia	2024 -
		Tech	Present
Graduate	 Led discussion and lab sessions for 	University of	Jul.
Teaching	introductory electromagnetism course	Wisconsin-	2019 –
Assistant	(Physics 104)	Madison/	Aug.
		Dr. Jim Reardon	2019

PUBLICATIONS

- Yujun Choi*, Hruday Mallubhotla*, Mark Friesen, Susan Coppersmith, and Robert Joynt, "Bayesian and geometric analyses of power spectral densities of spin qubits in Si/SiGe quantum dot devices," In preparation.
- Arshag Danageozian, **Yujun Choi**, and Sophia E. Economou, "Tailoring single-chip photonics to the time-delayed feedback paradigm of photonic graph state generation," In preparation.
- Arshag Danageozian, **Yujun Choi**, Alp Sipahigil, and Sophia E. Economou, "Protocol for photonic graph state generation from T centers in silicon," In preparation.
- Yujun Choi[†], John M. Nichol, and Edwin Barnes, "Ballast charges for semiconductor spin qubits," Phys. Rev. Lett. **134**, 237002 (2025).
- Yujun Choi, Susan Coppersmith, and Robert Joynt, "Using stochastic resonance of two-level systems to increase qubit coherence times," Phys. Rev. A 110, 052408 (2024).
- Yujun Choi and Robert Joynt, "Interacting random-field dipole defect model for heating in semiconductor-based qubit devices," Phys. Rev. Res. 6, 013168 (2024).
- Yujun Choi, Tanmay Singal, Young-Wook Cho, Sang-Wook Han, Kyunghwan Oh, Sung Moon, Yong-Su Kim, and Joonwoo Bae, "Single-copy certification of two-qubit gates without entanglement," Phys. Rev. Appl. 18, 044046 (2022).
- Yujun Choi and Robert Joynt, "Anisotropy with respect to the applied magnetic field in relaxation and dephasing times of spin qubits," npj Quantum Inf. 8, 70 (2022).
- Jinwon Yoo, **Yujun Choi**, Young-Wook Cho, Sang-Wook Han, Sang-Yun Lee, Sung Moon, Kyunghwan Oh, and Yong-Su Kim, "Experimental preparation and characterization of four-dimensional quantum states using polarization and time-bin modes of a single photon," Opt. Comm. **419**, 30 (2018).
- Yujun Choi, Kang-Hee Hong, Hyang-Tag Lim, Jiwon Yune, Osung Kwon, Sang-Wook Han, Kyunghwan Oh, Yoon-Ho Kim, Yong-Su Kim, and Sung Moon, "Generation of a non-zero discord bipartite state with classical second-order interference," Opt. Express 25, 2540-2551 (2017).
- Yujun Choi, Osung Kwon, Minki Woo, Kyunghwan Oh, Sang-Wook Han, Yong-Su Kim, and Sung Moon, "Plug-and-play measurement-device-independent quantum key distribution," Phys. Rev. A 93, 032319 (2016).

PATENTS

■ Yong-Su Kim, Sang-Wook Han, Sung-Wook Moon, **Yujun Choi**, "Method and apparatus for quantum cryptographic communication," US Patent 9,722,785 (2017).

^{*}Contributed equally

[†]Corresponding author

CONFERENCE PRESENTATIONS

Oral Session

- Yujun Choi, John Nichol, and Edwin Barnes, "Ballast charges for semiconductor spin qubits," APS Global Physics Summit (2025).
- Yujun Choi and Robert Joynt, "Interacting random-field dipole defect model for heating in semiconductor-based qubit devices," APS March Meeting 2024 (2024).
- Yujun Choi, Susan Coppersmith, and Robert Joynt, "Driving charge noise sources in semiconductor qubit devices with oscillating electric field," APS March Meeting 2023 (2023).
- Yujun Choi and Robert Joynt, "Characterizing noise sources of spin qubit devices with the anisotropy in relaxation and dephasing times," APS March Meeting 2022 (2022).
- Yujun Choi, Osung Kwon, Sang-Wook Han, Yong-Su Kim, and Sung Moon, "Toward practical measurement-device-independent quantum key distribution," The Optical Society of Korea Winter Annual Meeting (2015).

Poster Session

- Yujun Choi, John M. Nichol, and Edwin Barnes, "Qubit cruising on a rough charge sea," VTQ Symposium (2024).
- Yujun Choi, John M. Nichol, and Edwin Barnes, "Ballast charges for semiconductor spin qubits," LPS Quantum Computing Program Review (2024).
- Yujun Choi and Robert Joynt, "Noise characterization of spin qubits using anisotropy in decoherence times," The Optical Society of Korea 5th Quantum Information Conference (2022).
- **Yujun Choi** and Robert Joynt, "Characterization of noise sources using anisotropy in T₁ and T₂ of spin qubits," Silicon Quantum Electronics Workshop 2021 (2021).
- Yujun Choi, Osung Kwon, Minki Woo, Kyunghwan Oh, Sang-Wook Han, Yong-Su Kim, and Sung Moon, "Measurement-device-independent quantum key distribution with plug-and-play architecture," The 10th Asia-Pacific Laser Symposium (2016).
- Yujun Choi, Jiwon Yune, Kang-Hee Hong, Hyang-Tag Lim, Osung Kwon, Sang-Wook Han, Sung Moon, Yong-Su Kim, and Yoon-Ho Kim, "Strange quantum discord in two-photon interference," The 14th Advanced Lasers and Their Applications (2015).

PROFESSIONAL SERVICE

Grant Proposal Writing

• Co-authored a proposal for the 2026 CCI SWVA Cybersecurity Research Call with Dr. Sophia E. Economou, Virginia Tech (submitted in May 2025).

Journal Referee

- Nature (1 time)
- Nature Physics (1 time)

• Physical Review Letters (1 time)

Session Chair

Session F46: Focus Session: Shuttling and Readout in Spin Qubit Arrays, APS March Meeting 2024

Seminar Committee

■ VTQ Seminar Planning Committee (2024-2025)

OUTREACH ACTIVITIES

Summer School Tutor

 Quantum Information Science and Engineering High-School level Summer School (Virginia Tech, July 2025)

SCHOLARSHIPS

Kwanjeong Overseas Scholarship (\$100,000)	2018 – 2022
Kwanjeong Educational Foundation	
The National Scholarship for Science and Engineering (\$40,000)	2010 - 2013
Korea Student Aid Foundation	